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On the basis of the scale covariance of correlation functions under a coarse- 
graining in space and time, the Boltzmann equation for neutral gases, the 
Balescu-Lenard-Boltzmann-Landau equation for dilute plasmas, and 
linear equations for the variances of fluctuations are derived from the 
BBGKY hierarchy equations with no short-range correlations at the initial 
time. This is done by using Mori's scaling method in an extended form. 
Thus it is shown that the scale invariance of macroscopic features affords a 
useful principle in nonequilibrium statistical mechanics. It is also shown 
that there exist two kinds of correlation functions, one describing the 
interlevel correlations of the kinetic level with its sublevels and the other 
representing the fluctuations in the kinetic level. 
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1. I N T R O D U C T I O N  

Coarse-gra in ing  in space and t ime is essential  for  der iving macroscopic  
equat ions  f rom the stat is t ical  mechanical  s tandpoin t .  I t  has been recent ly 
real ized that  this coarse-gra in ing in space and t ime can be fo rmula ted  exactly 
by means  o f  a pro jec tor  me thod  for  reducing var iables  and a scaling me thod  
for  reducing processes31> The fundamenta l  concept  then in t roduced  is the 
pr inciple  o f  macroscopic scale invariance: tha t  a macroscopic  equa t ion  must  
be invar iant  under  the scaling for  a re levant  coarse-gra in ing  in space and  
t ime. In previous  papers  kinet ic  equat ions  for  a spat ia l ly  coarse-gra ined 
par t ic le  densi ty  in /z  phase  space o f  neutral  gases and  di lute  p lasmas  and for  
its f luctuat ions have been der ived f rom this po in t  o f  view. (2'3) 
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Since the monumental work by Bogoliubov (4~ and Kirkwood (5) in 1946, 
various attempts to obtain kinetic equations from the Liouville equation or 
equivalent BBGKY hierarchy equations have been made under various 
specific assumptions. (6~ In those attempts, however, coarse-graining in space 
has not been carried out explicitly. Coarse-graining in time is closely related 
to this coarse-graining in space, and these two coarse-grainings must be 
carried out coherently. This can be formulated by means of a scaling method 
proposed by Mori. (1~ Indeed, in the present paper, we shall show that kinetic 
equations can be derived from the BBGKY hierarchy equations by requiring 
that the kinetic equations are invariant under the scaling for the kinetic 
coarse-graining in space and time. Thus we can avoid Bogoliubov's functional 
Ansatz, Kirkwood's time smoothing, and the factorization Ansatz which 
conventional theories employ. 

In the present paper we shall also study the fluctuations around the 
kinetic equations. The fluctuations around the Boltzmann equation have 
been studied in a discrete kinetic model without spatial inhomogeneity by 
van Kampen with the aid of the system-size expansion37~ We shall study 
them from first principles and for more realistic molecular models with the 
aid of  the scaling method. Thus it will turn out that there exist two k i n d s  of 
correlation functions, one describing the contributions of the sublevel 
processes and the other representing the fluctuations of the kinetic processes. 

Let us consider a neutral gas of identical particles with mass rn and a 
small mean particle density c, and a dilute gas of electrons with charge -e 
in a neutralizing, smeared-out background of positive charge with charge 
density ce. The neutral gas has two characteristic lengths, the linear force 
range r0 and the mean free path l r -= 1/Cro 2, and the corresponding time 
scales, the mean duration of a collision r0 = ro / ( kBT/m)  1/2 and the mean 
free time ~'r ~ l r / (kBT/rn)  ~12, T being the temperature. The electron plasma 
has three characteristic lengths, the Landau cutoff ro =- 4~re2/kBT, the Debye 
length ?tD = (kBT/4rre2c) 1/2, and the mean free path I i = 1/cro 2, and the 
corresponding time scales, % = ~/~%, rD = 1/oJp, and rf = 1/EoJp, where 
o)p =_ (47re2c/rn) ~I2 is the plasma frequency and E = ro/AD = ;~D/I~ is the 
plasma parameter. In the kinetic region, the length cutoff b and the time 
cutoff tc are set as 

lr >> b >> lm, "l"f :>> tc  ~>> T m (1) 

where the sublevel characteristic length and time (lm, rm) represent (r0, to) 
in the case of the neutral gas and (AD, 1/wp) in the case of the electron 
plasma. 

The slowly varying degrees of freedom of interest are coupled to the 
rapidly varying processes whose length scales are smaller than b or whose 
time scales are shorter than to. In order to take into account this coupling 
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fully, we eliminate the rapidly varying processes and derive a closed equation 
of motion for the slowly varying degrees of freedom. Thus we obtain a 
kinetic equation renormalized by the rapidly varying processes. A general 
method for such an elimination is provided by the projector method and the 
scaling method, a,2~ In the present paper, however, we shall show that such 
an elimination can be carried out by just applying Mori's scaling method to 
the BBGKY hierarchy equations without introducing the cutoffs (b, to) 
explicitly. 

In Section 2 we summarize basic equations. In Sections 3 and 4 the 
kinetic processes of neutral gases and dilute plasmas are explored. Section 5 
is devoted to a summary and remarks. 

2. BASIC EQUATIONS 

Starting from the Liouville equation, we can obtain the BBGKY 
hierarchy equations in the thermodynamic limit(4~: 

Ot + L ( i )  - O,j f~(1,..., s; t) 

= c ~ ( 0~.~+1f,+1(1,..., s + 1 ; t )  d ( s  + 1) (2) 
d 

where 0t - O/~t, i - (r~, p~) represents the position and momentum of the 
ith particle, and c denotes the mean particle density. In (2), L ( i )  and 0~j are 
the differential operators defined by 

L ( i )  - (pJm). (O/Sr~) + (O/8p~). K(p~, r~) (3) 

O~j =- [OV(r~j)/~r~j]. [(~/~p~) - (e/0pj)] = Oj~ (4) 

where r~j --- r~ - rj, and K(p~, r~) and V(r~j) are the external field and the 
intermolecular potential, respectively. Here the distribution functions are 
normalized in such a way that (1/a)ffl(1) d(1) = 1 and 

(1/f~)ff~+l(1 .... , s +  1) d ( s +  1) =f~(1 .... , S), 

f~ being the volume of the system. Let us introduce the correlation functions 
G(1, 2), H(1, 2, 3), I(1, 2, 3, 4) .... through the Ursell-Mayer procedure: 

f~(1, 2) = f(1)f(2) + G(1, 2) (Sa) 

fa(1, 2, 3) = f ( 1 ) f ( 2 ) f ( 3 )  + f(1)G(2, 3) + f(2)G(3,1 ) 

+ f(3)G(1, 2) + H(1, 2, 3) (5b) 
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f4(1, 2, 3, 4) = f(1)f(2)f(3)f(4) + f(1)H(2, 3, 4) 

+ f(2)H(3, 4, 1) + f(3)H(4, 1, 2) 

+ f(4)H(1, 2, 3) + f(1)f(2)G(3, 4) 

+ f(3)f(4)G(1, 2) + f(2)f(3)G(4, t) 

+ f(4)f(1)G(2, 3) + f(1)f(3)G(2, 4) 

+ f(2)f(4)G(1, 3) + I(I ,  2, 3, 4) (5c) 

and so on, where f(1)-= fl(1). Then the BBGKY hierarchy equations are 
rewritten as 

[at + L(1)]f(1 ; t) = c f d(2)012[f(1; t)f(2; t) + G(1, 2; t)] (6) 

[0~ + L 0 )  + L(2) - 0~d6(1, 2; t) 

= 012f(1; t)f(2; t) 

+ c f d(3) [O~3f(1;t)G(2, 3; t) + 023f(2; t)G(3, 1; t)] 

e f dO)(o13 + 023)[f(3;t)G(1,2;t) + H(1,2,  3; t)] (7) + 

lot + L(1) + L(2) + s - (01z + 02, + 0al)IH(1, 2, 3; t) 

= (012 + 01a)f(1; t)G(2, 3; t) + (021 + 023)f(2; t)G(3, 1; t) 

+ (081 + Oa2)f(3; t)a(1, 2; t) 

+ c f d(4){(024 + 0a4)G(1, 4; t)G(2, 3; t) 

+ (014 + 034)6(2, 4; t)G(1, 3; t) + (014 + 024)G(3, 4; t)G(1, 2; t) 

+ 014f(1 ; t)H(2, 3, 4; t) + 024f(2; t)H(3, 4, 1 ; t) 

+ 034f(3; t)H(4, 1, 2; t) + (014 + 024 + 03~)[f(4, t)H(1, 2, 3; t) 

+ I(1, 2, 3, 4; t)]} (8) 

Equation (7) is integrated to give 

G(1, 2; t) 

= S~I(I, 2)G(1, 2; 0) + ds S(21(1, 2) 

t - s)f(2; t - s) + c f  d(3){Olaf(1; t - s)G(2, 3; t - s) • [01~f(1 ; 

+ 02af(2; t -- s)6(1,  3; t - s) 

+ (01~ + 02~)[f(3; t - s )6(1,  2; t - s) + H(1,  2, 3; t - s)]}] (9) 

where N2)(1, 2) - exp{t [L(1) + L(2) - 012]}. 
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T h e  va r i ance  m a t r i x  o f  f luc tua t ions  is g iven by  

X(1, 2; t )  = ( l / c )  3(1 - 2) f (1  ; t )  + G(1, 2; t )  (10) 

whe re  3(1 - 2) = 8(pl - P2) 8 ( h  - r2). E q u a t i o n s  (6) a n d  (7) lead to  

[O t + L(1)  + L(2)  - O~2]X(1, 2; t )  

= -(1/c)0~2" 3(1 - 2)f(1 ; t)  + 3(1 - 2) j d(3)  O~aG(1, 3; t)  

+ c f  d(3)  [01af(1 ; t )x(2,  3; t )  + 02af(2;  t)x(3,  1; t)]  

+ cfd(3)(o13 + o ~ 3 ) [ f ( 3 ; t ) x ( 1 , 2 ; t )  + H ( 1 ,  2, 3; t)]  (11) 

E q u a t i o n  (8) is in tegra ted  to  give 

/ t  0 ,  2, 3; t )  

= S ~ ( 1 ; 2 , 3 ) H ( 1 , 2 , 3 ; 0 )  + t i s S U e ( I , 2 , 3 )  (012 + 01o) 

x f ( 1 ;  t - s ) [x(2 , 3; t - s )  - ( l / c )  3(2 - 3 ) f (2 ;  t - s)]  

+ (021 + 023) f (2 ; t  - s)[x(1,  3 ; t  - s )  - ( l / c )  3(1 - 3 ) f (1 ;  t - s)]  

+ (0a~ + O~2)f(3;t  - s ) [ x ( 1 , 2 ; t  - s)  - ( l / c ) 3 ( 1  - 2 ) f (1 ;  t - s)]  

+ c f d(4)  {(02, + 034)G(1, 4;  t - s)[x(2,  3; t - s )  

- ( l / c )  3 ( 2  - 3 ) f ( 2 ;  t - s ) ]  

+ (014 + 034)G(2 ,4; t  - s)[x(1,  3 ; t  - s )  - ( l / c )  3(1 - 3 ) f (1 ;  t - s)]  

+ (014 + 02~)G(3, 4; t - s)[x(1,  2; t - s )  - ( l / c )  3(1 - 2)f (1  ; t - s)]  

+ 0~4f(1 ; t - s ) H ( 2 ,  3, 4;  t - s )  + 024f(2; t - s ) H ( 3 ,  4, 1 ; t - s )  

+ 034f(3; t - s ) H ( 4 ,  1, 2; t - s )  + (01, + 02, + 03,) 

x [ f (4 ;  t - s ) H ( 1 ,  2, 3; t - s )  + I ( 1 , 2 ,  3, 4; t - s)]}] (12) 

where  S~a)(1, 2, 3) =- exp{t [L(1)  + L(2)  + L(3)  - 012 - 023 - 0al]}. 

3. T H E  KINETIC REGION OF N E U T R A L  GASES 

In  this sect ion we a s s u m e  tha t  the  i n t e rm o l ecu l a r  force  is o f  shor t  range ,  
wi th  a l inear  force  r ange  r0. Then ,  a c c o r d i n g  to  M o r i ' s  scal ing m e t h o d ,  m 



142 Terumitsu Morita, Hazime Mori,  and Michio Tokuyama 

the kinetic processes characterized by l t and ~-t can be extracted by the 
scaling 

It --> Lit ,  ro ~ ro, c --> c/L (13a) 

rl --> Lr l ,  t -+  Lt  (13b) 

with L >> 1. The mass, momenta, and temperature are unchanged. The 
scaling (13b) is obtained from 1 t -+ L1 t and ~'r -+ L~t. The requirement of the 
scale invariance of kinetic equations leads to the scaled form 

f (1 ;  t) = if(P1, rl/lr; t/lt) (14) 

where the scaling exponent has been determined from the normalization 
condition. The scale invariance also leads to the following scaled forms for 
G, H, and higher order correlation functions describing the contributions of 
the collision processes characterized by r0 and %: 

G(1, 2; t) = (ro/ly)~lG(pl, p2, rl/lt ,  r21/ro ;t/It ,  t/ro) (15a) 

H(1, 2, 3; t) = (ro/lr)"21q(pz, P2, P3, rt/It, r2~/ro, r31/ro; tilt, t/ro) (15b) 

where G a n d / t  are scale invariants. The exponents /~ and/z2 represent the 
magnitudes of the correlation functions, and (9) and (12) lead to t~l -- tz~ -- 0. 
Applying the kinetic scaling (13) to (6) and (9), we thus obtain for large L 

[Or + L(1)]f(1 ; t) --- c f d(2) 0~2[f(1 ; t ) f (p2,  rl; t) + G(1, 2; t)] (16) 

fo G(1, 2; t) = ds exp[-s(g2~. 0/~r2t - O~2)]O~2f(1;t)f(p2,r~; t) 

+ exp{-  t[@~/m). O/~rl 

+ (~/~p~)-K(p~, rl) + (O/~p~).K(p2, rl)]} 

x lim exp[-Lt(g2~.O/Or21 - 0~)]G(1, 2; 01 (17/ 
L---~ oo 

where g2z - (P2 - PO/m, and r2z and s have been kept unchanged in accor- 
danee with ro, ~o -+ ro, zo. Balancing the two terms in L(1), we obtain 

K(pz, r~) = (ro/ls)K(P~, r~/b) (18) 

where K is a scale invariant. Let us assume G(1, 2; 0) = 0 at the initial time. 
Then we obtain the nonlinear kinetic equation 

[St + L(l)]f(1 ; t) = c r d(2) T(1, 2)f(1 ; t)f(p2, rl ; t) (19) 
.) 
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where 

r(1, 2) _= 012~e~(1, 2) (20a) 
~(1 ,  2) -- exp[-- t(g21.a/cqr2~ - 012)] exp(tg21-0/Or~l) 

= 1 + dsexp[-s(g21.c~/&21 - 0~2)10~2 exp(sgm.0/&21) (20b) 

The rhs of  (19) can be transformed into the usual Boltzmann collision 
integral38~ Thus we obtain the Boltzmann equation for the spatially inhomo- 
geneous dilute gas in an external field. 

Next let us consider the fluctuations of the kinetic processes. The scale 
covariance of variances and correlations leads to the scaled forms 

X(1, 2; t) = (ro/ll)%2(pl, P2, rl//,, r2~//,; t/lf) (21a) 

H(I ,  2, 3; t) 

= (ro/l~)vtH(Pl, P2, Pa, rl / l l ,  r2~/ll, ra~/ro; t/ll,  t/ro) (21b) 

I(1, 2, 3, 4; t) 

= (ro/lj)v~ifP~, Pz, Pa, P, ,  r i / l l ,  r2d6 ,  ral/ro, r,t/,'o; t /b ,  t/ro) (21c) 

for the molecular configurations where molecules 3 and 4 locate near 1. 
Here ;~, ~ ,  and [ are scale invariants. This scale covariance results from 
the scale invariance of  the probability for fluctuations, m We assume 
/7(1, 2, 3; 0) = 0 at the initial time. Then, applying the scaling (13) and 
r= --> Lr21 to (12), we obtain, for d > 1, 

f d(3) O~aH(1, 2, 3; t) 

L - a + l J  -- d(3) O,a--Jo~ d s e x p [ - s ( g a l ' a / & a z  - O,a)] 

x 0ia{f(1 ; t)[X(2, Pa, r~; t) - (I/c) 8(p2 - Pa) 8(r~ - r~)f(2; t)] 

+ f(p~, r~; t)[x(1, 2; t) - (I/c) a(1 - 2)f(1;  t)]} (22) 

and Vo = v 1 = v z = d - 1, where d is the spatial dimensionality and we have 
used the fact that 8~2--+L-~*+~0i2 with $ > O. Similarly, from (11) we 
obtain 

[at + L(1) + L(2)]X(1, 2; t) 

= 8(1 -- 2 ) . (d (3 )  T(1, 3)f(1 ; t ) f(Pa,  rl; t) 

+ c f d(3) [0~af(1 ; t)x(2, Pa, r~; t) + 02af(2; t)x(1, Pa, r2; t) 

+ O~af(.pa, r~; t)x(1, 2; t) + 02af(Pa, r2; t)x'(t, 2; t) 

+ (0,a + 02a)H(1, 2, 3; t)l (23) 
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Inserting (22) into (23), we obtain the linear variance equation 

[O, + L(1) + L(2)]X(1 , 2; t) 

c f d(3) {T(1, 3)[f(1 ; t)x(2, Pa, rl;  t) + f(Pa, rl;  t)x(1, 2; t)] 

+ T(2, 3)[f(2; t)x(1, Pa, r2; t) 

+ f(Pa, rz; t)x(1, 2; t)]} + 2cE~,2( f )  (24a) 

E i , 2 ( f )  =- (1/2c) 3(1 - 2) f d(3) T(1, 3)f(1 ; t ) f ( p s ,  rl; t) 

- (1/2c) ~ d(3) (T(1, 3)[f(1 ; t) 3(P2 - Pa) 8(r2 - rl)f(2; t) 

+ f(Pa, r~; t) 3(1 - 2)f(1 ; t)] 

+ T(2, 3)[f(2; t) 3(p~ - Pa) 8(rx - r2)f(1 ; t) 

+ f(Pa, ra; t) 8(1 - 2)f(l  ; t)]} (24b) 

where we have used the fact that f dr3t 0~ = 0. 
If d > 1, then X(1, 2) / f (1 ) f (2 )  ~ (ro/lr) a-1 << 1 and the fluctuations are 

very small compared to the systematic part f(1 ; t). Then the fluctuations are 
described by a Gaussian Markov process specified by the variances X(1, 2) 
and the diffusion coefficients E~.2(f ) .  ~'2) Thus if d > 1, then the kinetic 
processes are completely determined by f (1 ;  t) and X(1, 2; t). 

4. THE KINETIC REGION OF P L A S M A S  

In this section we consider the kinetic processes of a dilute classical 
electron plasma. We assume that the plasma parameter E = 1/c2t~ 3 is small 
so that ro/2t9 = 2to~If = e << 1. The scaling (13a) leads to 

1i ~ L i t ,  2tD --~ ~ 2tD, ro ~ to,  c --~ c/L,  ~ -+ e/V'L (25) 

where charge e, mass m, and temperature T are unchanged. 
Let us proceed similarly to the previous section. In the kinetic region 

characterized by l I and rl, we have the scaled form (14); namely, 

f(1 ; t )  = i f(P1, r l / l f ;  t i l l)  (26a) 

There exist two different sublevels, specified by (r0, %) and (2tD, I/c%), 
respectively. The correlation functions that describe the interlevel correlations 
of the kinetic level (1i, rr) with the two sublevels are indicated by subscripts 1 
and 2, respectively. Then the scale covariance leads to 

G~(1, 2; t) = ~lG~(p~, P2, r l / l l ,  r21/ro; t/l~, t/ro) (26b) 

G2(1, 2; t) = ,"~G2(pl, P2, r~/Ir, rzl/2tz~; t /I , ,  t/2to) (26c) 

and similar scaled forms for H. In order to separate the contributions of the 
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two sublevels, we introduce a length cutoff a satisfying ro < a << A~ and 
rewrite (6) as 

[at + L(1)]f(1;t) 

= c f d(2) 0~2f(1; 

+ c dr21 r~l 

- f ~  dr21r~l f 

J; J + dr2~ r 2 21 

where dr21 =- r221 dr21 d~o, r2~ - [r21[. 
a-+ a. 

t)f(2; t) 

f d~ofdpzOzzG~(1,2;t) 

doJ f dp2 0~2G~(1, 2; t) 

d~o f dp2 0~2G2(1, 2; t)] (27) 

The cutoff a is set so that its scaling is 

We assume GI(1, 2; 0) = G2(1, 2; 0) = 0 at the initial time. Then, as 
was shown in Section 3, GI(1, 2; t) is given by the first term of (17), and 
/xl = 0. In the third and the fourth terms of the rhs of (27) we change the 
integral variable as r2~ = x/Lr~ and rewrite r~  as r2~, whereas in the first 
and second terms we do not make a change. Then the first and second terms 
lead to the Boltzmann collision term with the Coulomb potential, 

B~(f) =_ f d(2) T(1, 2)f(1 ; t)f(pz, rl;  t) (28) 

and the third term turns out to be the Landau collision term, (9~ 

f fo Ll( f )  -- d(2) 012 ds exp[-  sg21.0/~r21] O~2f(1 ; t)f@2, r~; t) (29) 

As will be shown in Appendix A, we have ~2 = 1, 

fo ( a~.(1, 2; t) = ds exp(-sg~.0/~r21) 0~2f(1; t)f~2, r~; t) 

+ c f d(3) [013f(1; t)G2(p2, p~, rl, r3~; t) 

+ 02~f(p2, r~; t)a~(1, 3; t)]} 
% 

(30) 

and hence the fourth term leads to the Balescu-Lenard collision term for the 
spatially inhomogeneous plasma, ~1~ 

V~ 2 BL~(f)=8='f dq f dp2 q.~-~p~ 1 ~  3(q'g~2) 

x q. ~Pl ~ f(1;t)f(~2, r~;t) (31) 
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where 

%lrl(q,f) --- 1 + 8~icVq f dp2 ~-(q.g12)q.(O/Op2)f(p2, rl;  t) (32) 

V~ ~ e2/2~2q 2, 3_(x) = 8(x) + (i/Tr)~(1/x), and ~(1/x) denotes the principal 
part of 1Ix. Thus we obtain the Balescu-Lenard-Boltzmann-Landau 
equation,(3,6) 

[0~ + L(1)]f(1; t) = cJ~(f) (33a) 

Jl(f) - B~(f) - Ll(f) + BL~(f) (33b) 

Each of these three collision terms has a divergence difficulty. Their sum 
J~(f), however, is free of divergence for both close and distant colli- 
sions.(6.12,z s) 

�9 In the usual cluster expansion approach to the BBGKY hierarchy of 
plasmas, it is assumed that G(1, 2)/f(1)f(2) ,,~ ~, H(1, 2, 3)/f(1)f(2)f(3) ~ 
r However, this assumption is only valid for the correlation functions 
with a length scale of order AD, such as (26 0.  The correlation functions with 
length scale of order ro, such as (26b), have a different scaling. In the present 
paper, we have succeeded in taking into account both types of correlation 
functions and thus in deriving the divergence-free kinetic equations from the 
BBGKY hierarchy. 

Next let us consider the fluctuations. Similarly to (26), we have the 
following scaled forms for the electronic configurations where electron 3 is 
located �9 close to 1 : 

X(1, 2; t) = ~o2(pl, P2, r~/b, r21/b; t/l•) (34a) 

//1(1, 2, 3; t) = E~l/7~(pl, P2, P3, r~/Ir, r2~/ll, r31/ro; tilt, t/ro) (34b) 

H2(1, 2, 3; t) = c'2/72(p~, P2, P3, rl/lt, r2~/l I, r31/AD; tilt, t/AD) (34C) 

where 2,/71, and/~2 are scale invariants. Similarly to (27), we rewrite the H 
term of (11) as 

f d(3) O13H(1, 2, a; t) = ~ f  dr31r~ f d~, f dp3 013Hl(1, 2, 3: t) 

-los dral rgl f d~o f dpa OlaH~(l, 2, 3; t) 

f ?  dr31 r~l f do~ f dp3 0~3H2(1, 2, 3; t) (35) + 

We assume //1(1, 2, 3; 0 ) =  //2(1, 2, 3; 0 ) =  0 at the initial time. Then 
applying the scaling (13) and r21-+ Lr2l to (12), we obtain 
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H~(1, 2, 3; t) 

--'~L -2 ds exp[-s(g31.~/~ra~ - O~a)] O~3[f(1 ; t)x(2, Pa, r~; t) 

+ f(p~, r~; t ) x O ,  2; 0 

- O / c ) f ( 1 ;  t) ~(p~ - p~) ~(r~ - r~)f(2; 0 

- (t/c)f(ps, rl ;  t) 3(1 - 2)f(1; t)] (36) 

and vl = 4 and therefore v0 = 4. In the second and third terms of the rhs of  
(35), we change the integral variable as r~l a,/-LLr~l and rewrite r '  3I a s  F3I 

whereas in the first term we do not make a change. Then the second term 
leads to 

-L f d(3)O~a fo ~ dsexp[-sg31.8/Or3~] 

• O~8[f(1;t)x(2, P3, rl; t) + f(P3, rl;  t)X(1, 2; t) 

- (l/c)f(1; t) 3(p3 - P2) 8(rl - r2)f(2; t) 

- (1/c)f(p3, r~; t) 5(1 - 2)f(1; t)] 

= - L - 2 f  d(3) [3Ll(f)/~f(3; t)] 

• [X(3, 2; t) - (l/c) 3(3 - 2)f(2; t)] (37) 

As will be shown in Appendix B, the third term leads to 

L-= f a(J) .... ~SBL~(f) [ X(3'2; t) - le 8 ( 3 - 2 ) f ( 2 ;  t)] (38) 

and we obtain v~. = 5. The first term must have the same form as (22) with 
d = 3. Thus we obtain the linear variance equation 

[at + L(1) + L(2)]X(1 , 2; t) 

= c f d(3) [Jl:a(f)x(3, 2; t) 

+ J2:a(f)x(1, 3; t)] + 2cEI.2(f) (39a) 

E~,2(f) - (1/2e) 3(1 - 2)J~(f) 

- (1/2c) f d(3) [J,:a (f)3(3 - 2)f(2; t) 

+J2 :a  (f)8(3 - 1)f(1 ; t)] (39b) 

where Jl :a(f)  = 8Jt(f)/Sf(3). This has the same structure as (24). In fact, 
(24) is obtained from (39) by replacing J~(f) by the Boltzmann collision term. 
Thus it turns out that if d > 1, then the kinetic processes of  plasmas also 
obey a Gaussian Markov process and are determined by f(1 ; t) and X(1, 2; t). 
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5, S U M M A R Y  A N D  R E M A R K S  

On the basis of the scale covariance o f f ( l  ; t) and correlation functions 
under the kinetic scaling (13), we have derived the Boltzmann equation (19) 
for neutral gases, the Balescu-Lenard-Boltzmann-Landau equation (33) 
for dilute plasmas, and the evolution equations (24) and (39) for the variances 
of fluctuations from the BBGKY hierarchy equations with no short-range 
correlations at the initial time. It seems to us that the present derivation is 
more general and simpler than any previous derivations. Thus it would turn 
out that macroscopic scale invariance provides us with a new, useful principle 
in nonequilibrium statistical mechanics. 

We have assumed an initial ensemble in which there are no short-range 
correlations. This initial ensemble ensures the removal of pathological 
initial conditions with zero measure, such as the time-reversed state. Since 
such correlations are produced by the interaction between particles, we may 
assume that the initial ensemble can represent any meaningful ensemble 
after an initial transient period of the order of the mean duration of  a 
collision. 

It has been shown that there exist two kinds of correlation functions, 
which have quite different physical meanings. One type describes the inter- 
level correlations of the kinetic level with its sublevels, and examples are 
given by (15), (21b), (21c), (26b), (26c), and (34b), (34c). The other type 
represents the fluctuations in the kinetic level, and examples are given by the 
variances (21a) and (34a). This distinction would be important for describing 
the hierarchical structure of dynamic processes with different characteristic 
length and time scales. 

As has been shown in (26) and (34), different sublevels produce different 
interlevel correlations, which have different scaling properties. In the case of 
dilute plasmas, in order to separate the contributions of the two sublevels, 
(r0, %) and (AD, 1/o~p), we have introduced the length cutoff a. We can use a 
different length cutoff a', which satisfies r0 << a' < hD, and have the scaling 
a' --> v/La '. Then, instead of (27) and (35), we have 

f [~ + L(1)]f(1; t) c d(2) O~f(1; t)f(2; t) 

[fo f = c dr21r~l do~ dp2 012Gl(1,2;t) 

- fo" dr21r~ f d~, f dp2 0~2G~(1, 2; t) 

+ f) f (40) 
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f d(3) 018H(1, 2, 3; t) 

= ff" dr81r~i f dw f dp3 013H~(1,2, 3; t) 

- f:'dr31r~ ~ dco f dpa OlaH2(1,2,3; t) 

+ fo=drair~ f &o f dpaO,3H2(1,2,3;t) (41) 

In the third term of the rhs of (40) and (41) we change the integral variable 
~ r  t as r21 ~/Z 21, whereas in the first and second terms we make no change. 

Then in the scaling limit (13) these also lead to (33) and (39). Thus it turns 
out that the Boltzmann collision term comes out from G~ and the Balescu- 
Lenard collision term comes out from G2, whereas the Landau collision term 
is produced by either G1 or Gz. This clarifies the origin of the dual nature of 
the Landau collision term. 

The Vlasov equation for plasmas in the coherent region can be derived 
as follows. The dynamic processes characterized by ~D and 1/cop can be 
extracted by the coherent scaling (3~ 

AD -+ Lho, ro ---> ro, c --> c/L ~, e ---> elL (42a) 

rl ---> Lrl ,  t --> Lt (42b) 

with L >> I, where coy--> co~/L, b--> L2lf . The scale covariance under this 
scaling leads to 

f(1;  t) = ff(p~, r~IAD; t/AD) (43) 

Since the Coulomb interaction 012 in (6) extends over a distance of order AD, 
we have to introduce the following two types of correlation functions: 

GI(1, 2; t) = d~(pl, P2, r~/)tD, r21/ro; t/AD, t/ro) (44a) 

Gi(l, 2; t) = ~a-2G1(pl, P2, r~/~D, r21/Ao; t/aD) (44b) 

for d ~> 2. The correlation function Gr represents the fluctuations in the 
coherent region. If  G~(1, 2; 0) = 0, then G1 is also given by the first term of 
(17). Since 012 ---> 012/L a-1 for rzz -+ Lr21, (9) leads, for d ~> 2, to 

GA1, 2; t)--->L -~§ dsexp{-s[L(1) + L(2) - L-a+2012]} 

• {0x2f(1; t -- s)f(2; t -- s) 

c f d(3) [013f(1 ; t - s)GI(2, 3 ; t - s) + 

+ 023f(2; t - s)G1(3, 1; t - s) 

+ (0~3 + 023)f(3; t - s)Gl(1, 2; t - s) 

+ L-a+~(013 + 023)Hy(1, 2, 3; t - s)]} (45) 
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Therefore, changing the integral variable as r21 = Lr~ in (6), we obtain, for 
d > 2 ,  

e J" d(2) 012f(I ; t)f(2; t) (46) + L(1)]f(1 ; t) 

This is the Vlasov equation. Thus it turns out that the streaming term L(1) 
balances the Vlasov term in the coherent region, while it balances the BLBL 
collision term eJ~(f) in the kinetic region. The rhs of (46) is of order E, and 
G1 gives a close-collision term of order ~2, and Gf produces a non-Markov 
interaction term of order E a + 1. These higher order terms can be taken into 
account by using a multiple-time scaling. (3) In the low-dimensional plasmas 
(d ~< 2), the fluctuation correlation function Gf thus produces a major effect 
and the Vlasov equation becomes invalid. 

Finally, it would be worth noting two main features of the present 
theory. Many theories use chopping limits, such as the Grad limit, (~8) the 
Bogoliubov-Balsecu limit, (~'~6) and the fluid limit, (1~,15) where the particles 
are chopped so that mass m, charge e, and molecular diameter ro become 
zero with the mean particle density c increasing to infinity. Such a chopping 
limit, however, is not physical and cannot describe the fluctuations in the low- 
density limit c--~ 0. In the present theory, microscopic quantities such as 
m, e, ro, and momenta p~ are kept constant, and the macroscopic state 
parameter c is changed in accordance with the coarse-graining in space and 
time. Thus it has become possible to describe the fluctuations in t~ space 
correctly. A more complete description of the kinetic processes is provided 
by the method of generalized Brownian motion. (1-3) However, the present 
approach is more convenient from the practical point of view, and its 
generalization to the quantal case must be easier. 

A P P E N D I X  A, D E R I V A T I O N  OF (31)  

Applying the scaling (13) to (9), we obtain 

yo G2(1, 2; t) -+ (1/~/s ds exp(-sg21" 8/8r21) 

• (012f(1 ; t)f(.p2, rl; t) 

+ c f d(3) [01a f(1 ; t)G2(p2, P3, rl, r32; t) 

+ 02af(P2, h ;  t)G2(1, 3; t ) ] )  (A.1) 

where we have used the fact that f dr31 0~s = 0 and H2 ~ c 2. Let us define 

Kl(q) - Kplrl(q) -~ (27r)-3 f d(2) [exp(iq.r21)]G2(1, 2; t) (A.2) 
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Then we have 

012 = f dq [exp(/q.r2~)] d12(q) (A.3) 

where d~2(q) = -Vqiq .  [(O/0pl) - (O/~P2)], and (A.1) leads to 

Kl(q) = f dp~ 8~(q) d21(q)f(t ; t)f(p~, rl; t) 

+ c f dp2 6~2(q) [d2(q)f(p2, r~; t)Kl(q) 

+ dz*(q)f(1 ; t)K*2~(q) ] (A.4) 

where dl(q) ~- -(2~r)aVqiq'@/Opl), 6k2(q) --- zr6_ (q'g~2), and W* denotes the 
complex conjugate of  W. Since the scaling (13) leads to 

f ;  f dr2~ r~l do dp2 01zG2(1, 2; t) --> d(2) O~2Gs(1, 2; t) (A.5) 

we have BL~(f) = f dq d~(q)K~(q). By solving (A.4) for Kl(q), we can easily 
t ransform BLI(f) into the Balescu-Lenard collision term (31). (1~'~7~ 

A P P E N D I X  B. DERIVATION OF (38) 

Applying the scaling (13) and r2t -+Lr21 to (12), we obtain 

//2(1, 2, 3; t) 

--> L-  512 ds e x p ( -  sgal' ~/~r81) 
,J0 

x (01J(1 ; t)[x(2; Pa, r l ;  t) 

- (i /c) 6(p2 - Pa) 6(r2 - r l ) f (2 ;  t)] 

+ Oz3f(p3, r l ;  t)[x(1, 2; t) - ( l /c)  6(i - 2)f(1;  t)] 

+ c f  d(4){O~f(1; t)H2(2, P3, P~, r l ,  ra4; t) 

+ 034f(P3, r l ;  t)H2(1, 2, P4, r4~; t) + Oa~G2(I, P4, r~; t) 

x [)~(2, Ps, rz; t) - ( l /c) 6(p2 - pa) 6(r2 - r~)f(2; t)] 

+ 014G2(Pa, P4, rz, r~8; t) 

x [Z(1, 2; t) - (1/c) 6(1 - 2)f(1;  t)]}) (B.1) 

and vz = 5, where we have used the fact  that f dr42 042 = 0. Let us define 

- (2~-)-3 [ ~ d(3) [exp(iq-r3~)]H2(1, 2, 3; t) (B.2) 
J 
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Then (B.t)  leads to 

L~,2(q) = f dpa 8~a(q){d~(q)f(1 ; t)[x(2, Pa, rx; t)  

- ( l /c)  8(.p2 - P3) 8(r2 - r l ) f (2 ;  t)] 

+ d31(q)f(Pa, r~; t)[x(1, 2; t)  - ( l /c)  8(1 - 2)f(1 ; t)] 

+ c[dl*(q)f(l; t)L*3,ri,2(q) + d3(q)f(P3, r l ;  t)L1.2(q)] 

+ c da(q)K~(q)[X(2, Pz, r~; t) 

- ( l /c)  8(p2 - Ps) 8(r2 - r l ) f (2 ;  t)] 

+ c dl*(q)K*a,rl(q)[g(1, 2; t)  - ( l /c)  5(1 - 2)f (1;  t)]} (B.3) 

I t  can be shown f rom (A.4) tha t  f d (3)[~K1(q) /a f (3; t ) ] (X(3 ,2; t ) -  
( l /c)  8(3 - 2 ) f ( 2 ;  t)] is a solution o f  (B.3). Since the scaling (13) and  
r21 -+  Lrm lead to 

f; dra~ r ~  do dpa 0~sH2(1, 2, 3; t)  

d(3)O  H2(1, E,a;o;L-2f (B.4) 

we thus obta in  08) .  
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